DATA EVALUATION RECORD CHRONIC (REPEATED DOSE) TOXICITY TEST WITH THE HONEY BEE NON-GUIDELINE

1. <u>CHEMICAL</u> : Ipconazole	PC Code No.: 125618
---------------------------------	---------------------

2. TEST MATERIAL: Ipconazole (technical material) Purity: 96.7% w/w

(as total Ipconazole),

89.7% w/w (as Ipconazole cc), and 7.0% w/w (as Ipconazole ct)

3. CITATION

Authors: Patnaude, M. R.

Title: Ipconazole: Honey Bee (Apis mellifera) Larval

Toxicity Test, Repeat Exposure

Study Completion Date: November 21, 2017

Laboratory: Smithers Viscient

Sponsor: Kureha Corporation

Study No.: 11106.6109 MRID: 50451002 DP Barcode: 450645

4. REVIEWED BY: Holly Dimig, Junior Staff Scientist, CDM/CSS-Dynamac JV

Holy Dimiy

Signature: U **Date:** 04/30/2019

APPROVED BY: Adrian Graff, Environmental Scientist, CDM/CSS-Dynamac JV

Signature: Date: 05/13/2019

5. APPROVED BY: Holly Rogers, Biologist, EPA/OPP/EFED/ERB5

Signature: Date: 05/04/2020

APPROVED BY: Hannah Yingling, Biologist, USEPAEPA/OPP/EFED/ERB5

Signature: Hannah B. Yingling Date: 04/28/2020

This Data Evaluation Record may have been altered by the Environmental Fate and Effects Division subsequent to signing by CDM/CSS-Dynamac JV personnel. The CDM/CSS-Dynamac Joint Venture role does not include establishing Agency policies.

6. <u>STUDY PARAMETERS</u>:

Test Species and strain: Larval Honey bees, (Apis mellifera)

Age of Test Organisms at Test Initiation: 1st instar larvae, ≤24-hours old.

Exposure Duration: 22 days

7. <u>CONCLUSIONS</u>:

Individual synchronized honey bee (*Apis mellifera*) larvae (first instar) were exposed *in vitro* to Ipconazole (technical material) on Days 3 (D3) through Day 6 (D6) of the study at the nominal diet concentrations and nominal cumulative doses reported in the table below. The study author calculated the mean-measured diet concentrations, and applied the analytical recoveries to the cumulative doses to obtain the measured cumulative dietary doses. The reviewer divided those cumulative doses by the number of days of exposure (4) to obtain the measured daily doses of total Ipconazole. Concentrations and doses are summarized in the table below:

Nominal Diet Concentrations (µg ai/g diet)	Mean Measured Concentrations (μg ai/g diet)	Nominal Cumulative Doses (µg ai/larva)	Measured Cumulative Dietary Doses (µg ai/larva)	Measured Daily Dietary Doses (μg ai/larva/day)
8.8	8.8	1.4	1.4	0.35
25	25	4.0	4.0	1.0
75	68	12	11	2.8
210	210	34	34	8.5
630	630	100	100	25.0

Larvae used in the study were provided by Wood's Beekeeping Supply, Lincoln, Rhode Island. Dimethoate was tested as a reference toxicant at a nominal dose of 7.4 µg ai/larva. All groups consisted of 36 larvae per treatment group, placed within 48-well cell culture plates.

On Day 8, cumulative larval mortality was 0 and 3% in the negative and solvent controls, respectively, compared to mortality ranging from 0 to 100% in the treatment groups. On day 15, cumulative mortality averaged 3 and 11% in the negative and solvent controls, respectively, compared to mortality ranging from 3 to 100% in the treatment groups. On Day 22, the adult emergence rate was 94 and 86% in the negative and solvent controls, respectively, compared to emergence ranging from 0 to 97% in the treatment groups.

Weight was not recorded for organisms in the highest test level due to 100% mortality among organisms in this treatment level. Average weight was 0.104 and 0.103 g in the negative and solvent control groups, respectively, and ranged from 0.100 to 0.103 g in the treatment groups.

On Day 8, no uneaten diet was reported for any of the surviving larvae.

On Days 6 and 7, two, one, zero, nine, and two replicates were observed to be small in size in the 0.35, 1.0, 2.8, 8.5, and 25.0 µg ai/larva/day treatment groups, respectively, compared to one and seven replicates observed to be small in size in the negative and solvent controls, respectively.

Based on these results, the most sensitive endpoint was percent emergence, and the 22-day NOAEC and EC $_{50}$ were determined to be 210 and 313 μg ai/g diet, respectively, corresponding to a NOAEL and ED $_{50}$ of 8.5 and 13 μg ai/larva/day, respectively. Larval mortality, day 15 mortality, and adult emergence were significantly affected at the highest treatment level of 630 μg ai/g diet (or 25 μg ai/larva/day on a daily dietary dose basis). Emerged bee weight was unaffected.

The study is scientifically sound and is consistent with the OECD Guidance Document for measuring chronic (repeat dose) toxicity to honeybee larvae. The study is classified as acceptable.

	Mortality (Day 8)	Mortality (Day 15)	Adult Emergence	Weight
Diet	LC ₅₀ : 353	LC ₅₀ : 332	EC ₅₀ : 313	IC ₅₀ : >210
Concentration	95% CI: 333 to 375	95% CI: 298 to 370	95% CI: 275 to 357	95% CI: N/A
(µg ai/g diet)	Slope: N/A	Slope: N/A	Slope: N/A	Slope: N/A
	NOAEC: 210	NOAEC: 210	NOAEC: 210	NOAEC: 210
	LOAEC: 630	LOAEC: 630	LOAEC: 630	LOAEC: >210
Dietary Dose	LD ₅₀ : 14	LD ₅₀ : 13	ED ₅₀ : 13	ID ₅₀ : >8.5
(μg	95% CI: 13 to 15	95% CI: 12 to 15	95% CI: 11 to 14	95% CI: N/A
ai/larva/day)	Slope: N/A	Slope: N/A	Slope: N/A	Slope: N/A
	NOAEL: 8.5	NOAEL: 8.5	NOAEL: 8.5	NOAEL: 8.5
	LOAEL: 25.0	LOAEL: 25.0	LOAEL: 25.0	LOAEL: >8.5

8. <u>ADEQUACY OF THE STUDY</u>:

- **A.** Classification: This study is scientifically sound and is classified as acceptable.
- **B.** Rationale: There were no major deviations or deficiencies in this study and all validity criteria for the OECD guideline used were met in this study:
 - 1. Cumulative larval mortality across all control replicates from D3 to D8 was ≤15%.

- 2. Adult emergence across all control replicates on D22 was \geq 70%.
- 3. Cumulative larval mortality in the positive control of Dimethoate on D8 was $\geq 50\%$.

C. Reparability: N/A

- **9. GUIDELINE DEVIATIONS:** Procedures used in this study followed those described in the Smithers Viscient protocol entitled "Ipconazole: 22-Day Survival of Honey Bee Larvae, *Apis mellifera* L., during an *In Vitro* Exposure". The procedures used in this study are based on the OECD Guideline 239 dated 15 July 2016, procedures discussed in Protocol for the *in vitro* rearing of honey bee (*Apis mellifera* L.) workers (Schmehl, *et. al.*, 2016), and input from the U.S. EPA. The following deviations from OECD 239 were noted by the reviewer:
 - 1) The study author reported individual bee data for days 3-8 and day 15, but only reported group data for day 22. According to the EPA's Honeybee Toxicity Testing Frequently Asked Questions August 16, 2018, the individual bee is considered the replicate based on the dose being administered to each well which only contains a single individual. While the study author defined the replicate in the same manner as the EPA, this was not reflected in the raw data for bee weight and emergence.
 - 2) Royal jelly diet preparation ratios of Diets A, B, and C are based on modifications from Schmehl *et al.* (2016) and diet compositions for A and B deviated from OECD guidance.
 - 3) The shape of the grafted larvae at transfer was not reported. OECD recommends that newly hatched larvae are selected that have not yet formed a "C" shape.
 - 4) Random or impartial assignment of bees to test groups was not reported in the study report; however, the randomization is stated as part of the guiding study protocol (Appendix 1, pg. 53-54).
 - 5) The temperatures in two of the three bee development stages were slightly out of the suggested ranges. OECD allows temporary deviations however they should not last more than 30 minutes every 24 hours.

<u>Days 1 to 8</u>: 33-34 °C (recommended 34-35 °C) Days 7 to 15: 33-34 °C (recommended 34-35 °C)

6) The relative humidity in the pupal phase was not within the suggested ranges. OECD allows temporary deviations however they should not last more than 30 minutes every 24 hours.

Days 7 to 15: 51 to 72% (recommended $80 \pm 5\%$)

7) The physicochemical properties of Ipconazole technical were not reported.

These deviations **do not** affect the study.

10. <u>SUBMISSION PURPOSE</u>: This study was conducted to determine the effects of Ipconazole (technical material) on honey bee (*Apis mellifera*) larva following chronic oral exposure for the purpose of chemical re-registration.

11. MATERIALS AND METHODS:

A. Test Material: Ipconazole (technical material)

Description: White powder

Lot No./Batch No.: 89010

Purity: 96.7% w/w (as total ipconazole), 89.7% w/w (as

ipconazole cc),

and 7.0% w/w (as ipconazole ct)

CAS Number: 125225-28-7

Stability of compound under test

Analytical measurements of total Ipconazole in

conditions: the royal jelly larval diet demonstrated that the mean test item concentrations were recovered

at rates ranging from 90 to 100% of nominal.

Storage conditions of test

chemical: Stored at room temperature in a dark,

ventilated cabinet in the original container.

Range finding test yes/no (if yes, describe): Yes, a non-GLP preliminary test similar to the definitive test was initiated at Smithers Viscient on May 12, 2017 at nominal concentrations of 0.10, 1.0, 10, and 100 μg ai/larva, including a negative control and a solvent (acetone) control. One cell plate, containing 24 larvae per treatment and control was established. Day 3-8 larval survival was 92 and 83% in the negative and solvent controls, respectively, compared to mortality ranging from 4 to 92% in the treatment groups, and days 3-22 adult emergence was 83% in both the negative and solvent controls compared to emergence ranging from 0 to 83% in the treatment groups (emergence was 0% in the highest dosed test group). Based on these findings and in consultation with the Study Sponsor, nominal Ipconazole levels of 1.4, 4.0, 12, 34, and 100 μg ai/larva, equivalent to 8.8, 25, 75, 210, and 630 μg ai/g diet, respectively, a negative control, and a solvent (acetone) control were selected for the definitive exposure.

Physicochemical properties of Ipconazole used in solubility/homogeneity study.

Parameter	Values	Comments
Molecular Weight	Not reported	
Water solubility at 20°C (mg/L)	Not reported	See reviewer's comments
Vapor pressure (torr, at 25°C)	Not reported	
Mean organic carbon partition coefficient $K_{oc}\left(L/kg_{oc}\right)$	Not reported	
Log octanol-water partition coefficient Log Kow	Not reported	

B. Test Organisms

Guideline Criteria	Reported Information	Comments
Species	Honey bee (<i>A. mellifera</i>) identified as Italian hybrids, a mixture of the original subspecies <i>A. mellifera ligustica</i> and unidentified subspecies.	OECD recommends European honey bee (Apis mellifera)
Age at beginning of test Worker bees of uniform age.	First instar larvae, ≤24 hours old.	OECD recommends that on D1 of study, first instar (L1) synchronized larvae (i.e., larvae of the same age) are taken from comb of three colonies.
Source	Wood's Beekeeping Supply, Lincoln, Rhode Island, from 3 or more hives.	OECD recommends larvae are collected from three different colonies.
Were bees from disease- free colonies?	Not reported. The larvae were obtained from hives that had not been previously exposed to any chemical treatments within 4 weeks of test initiation.	OECD recommends that colonies used to obtain larvae should be adequately fed, health (i.e., as far as disease- and parasite-free), with a known history and physiological status.

Guideline Criteria	Reported Information	Comments
Were bees kept in conditions conforming to proper cultural practices?	Not reported, but bees were obtained from a beekeeping supplier.	

C. Test System

Guideline Criteria	Reported Information	Comments
Test Chambers	Larvae were reared in sterile, 48-well cell culture plates (1.6 mL/well, Corning® Costar® 3548) containing a plastic queen cup grafting cell (Mann Lake, QC-110) in 32 wells during acclimation and in 18 wells during exposure.	OECD recommends 48-well plate with each well containing a crystal polystyrene grafting cell.
	The pupation plates were sterile, 24-well cell culture plates (3.4 mL/well, Corning® Costar® 3526) each containing two layers of sterilized dust-free Kimwipes®.	
Temperature during exposure	Days 1 to 8: 33 to 34 °C Days 7 to 15: 33 to 34 °C Days 15 to 22: 33 to 34 °C The larvae, in their cell plates, were kept inside a plastic container in the same incubator used for the acclimation phase. Larvae, upon transfer to the pupal plates, were maintained within a different incubator and monitored continuously.	OECD recommends incubator at 34 – 35°C. Deviations may occur but temperature should not be lower than 23°C or higher than 40°C; deviations not last more than 15 minutes once every 24 hrs.
Relative humidity during exposure	Days 1 to 8: 90 to 98% Days 7 to 15: 51 to 72% Days 15 to 22: 60 to 70%	OECD recommends use of K_2SO_4 to maintain water saturated atmosphere.

Guideline Criteria	Reported Information	Comments
	The perimeter wells within each plate not containing larvae were partially filled with deionized water to assist in maintaining a water saturated atmosphere. Continuous monitoring was utilized.	

Guideline Criteria	Reported Information	Comments
Lighting	Constant darkness except for approximately 30 minutes each day during observations and renewal of the diet.	OECD recommends that plates should be maintained in darkness.

Guideline Criteria	Reported Information	Comments
Feeding	Each larva was fed for 6 days (except on Day 2) with a standardized amount of an artificial diet of 20 μL untreated Diet A on Day 1, not fed on Day 2, 20 μL treated/untreated Diet B on Day 3, and 30, 40, and 50 μL of the appropriately treated Diet C on Days 4, 5, and 6 respectively.	The study author reported that royal jelly diet preparation ratios are based on modifications from Schmehl <i>et al</i> (2016).
	<u>Diet A</u> ^a : 44% weight of royal jelly + 56% weight of an aqueous solution containing 2% weight of yeast extract, 9% weight of glucose + 9% weight of fructose.	OECD recommends that all larvae are fed once a day. Volume of diet is adjusted each day. Additional food should be added to the cell even if previous allocation has not been totally consumed. Presence of
	<u>Diet Ba</u> : 43% weight of royal jelly + 57% weight of an aqueous solution containing 2% weight of yeast extract, 11% weight of	uneaten food at termination of test should be reported.
	glucose + 11% weight of fructose. Diet Ca: 50% weight of royal jelly + 50% weight of an aqueous solution containing 4% weight of yeast extract, 18% weight of glucose + 18% weight of fructose.	OECD recommends: Diet A (D1): 50% weight of fresh royal jelly + 50% weight of an aqueous solution containing 2% weight of yeast extract, 12% weight of glucose and 12% weight of fructose
	^a calculated by the reviewer based on diet components provided on pages 17 and 53 of the study report.	Diet B (D3): 50% weight of fresh royal jelly + 50% weight of an aqueous solution containing 3% weight of yeast extract, 15% weight of glucose and 15% weight of fructose.
		Diet C (from D4 to D6): 50% weight of fresh royal jelly + 50% weight of an aqueous solution containing 4% weight of yeast extract, 18% weight of flucose and 18% weight of fructose.

D. Test Design

Guideline Criteria	Reported Information	Comments
Nominal test applications	Diet Concentrations:	
	0 (negative and solvent controls), 8.8, 25, 75, 210, and 630 μg ai/g diet	OECD recommends 5 treatments of increasing test concentrations. Alternatively, when a limit
	<u>Cumulative Doses</u> :	test is performed, a single dose of 100 μg ai/larva or
	0 (negative and solvent controls), 1.4, 4.0, 12, 34, and 100 μg ai/larva	the maximum achievable solubility (whichever is lower).
Measured test applications	Diet Concentrations as Total Ipconazole: <1.3 (<mdl, 210,="" 25,="" 630="" 68,="" 8.8,="" ai="" and="" controls),="" diet<="" g="" th="" μg=""><th></th></mdl,>	
	Daily Dietary Doses ^a as Total Ipconazole:	
	0 (controls), 0.35, 1.0, 2.8, 8.5, and 25.0 μg ai/larva/day	
	^a Calculated by the reviewer.	
Number of bees exposed per dosage level	36 larvae per test group	OECD recommends minimum of 12 larvae from each of 3 colonies allocated
	The replicate unit was the individual larva/bee since they were reared in an individual cell.	on the same plate to each treatment, i.e., minimum of 36 larvae per treatment.
Other experimental design information	The queen from three or more hives was isolated on a single frame for one day to provide known-aged eggs and subsequent larvae. The frames were delivered to Smithers Viscient so that ≤24-hour old larvae were removed for testing.	OECD recommends that newly hatched larvae are selected that have not yet formed a "C" shape and randomizing the allocation of larvae into the plates for each colony. On Day 1, larva is deposited in cell containing 20 µL diet.

Guideline Criteria	Reported Information	Comments
	Larvae were fed 20 µL of untreated Diet A on the day of transfer into the cell plates.	
	The shape of the grafted larvae at transfer was not reported.	
	Excess larvae were collected.	
	A 0.15 g ai/mL primary stock solution was prepared by bringing 7.7760 g of Ipconazole (7.5194 g as active ingredient to adjust for purity) to a volume of 50 mL with acetone. Additional stock solutions were prepared using a dilution scheme; the primary stock solution was used to prepare the dosing stock solutions. The solvent control diet contained an equivalent amount of untreated acetone (0.42%) as each treated diet. Untreated diet was used for the negative control.	

Guideline Criteria	Reported Information	Comments		
Bees randomly or impartially assigned to test groups	Not reported in study report but is stated as part of the guiding study protocol (Appendix 1, pg. 53-54).	OECD recommends that each group of a minimum of 12 larvae from each of the three colonies is considered a replicate for a given treatment level and identified as such on the microplate.		
Control	Untreated diet.	OECD recommends 12		
	36 negative control larvae.	larvae x 3 colonies=36 larvae minimum and that control mortality from D4 to D7 should be ≤15%.		
Solvent control	Untreated diet with 0.42% acetone.			
	36 solvent control larvae.	OECD recommends maximum of 5%.		
Reference Toxicant	Dimethoate, tested at a nominal dose of 7.4 µg ai/larva.	OECD recommends		
	36 reference larvae.	technical grade dimethoate at dose of 8.8 ± 0.5 µg a.i./larva. Mortality should be ≥50% at D7 for toxic reference.		
Total observation period and frequency of interim observations	The health of the larvae was observed and recorded daily.	OECD recommends that following chemical exposure on D4, mortalities are		
	Diet in the wells was observed on D7 and D8, and the number of larvae transferred to pupal plates was recorded.	checked at time of feeding on D5, D6 and D7 (test termination). Other observations including		
	Survival of pupae was first checked on D15. Larvae that failed to develop into pupae by D15 were classified as dead.	presence of uneaten food on D7 should be qualitatively reported.		
	Starting on D15, the number of emerged			

Guideline Criteria	Reported Information	Comments
	adults each day was recorded.	
	At the time of emergence, each adult bee, observed to be fully sclerotized with developed wings, was removed from the well plate and individually weighed.	

12. <u>REPORTED RESULTS</u>:

Guideline Criteria	Reported Information
Quality assurance and GLP compliance statements were included in the report?	Yes. The data and report were produced and compiled in accordance with all pertinent U.S. Environmental Protection Agency (EPA) Good Laboratory Practice Standards (GLPs) as set forth under the Federal Insecticide, Fungicide, and Rodenticide Act (1989) and as accepted by the OECD Principles of Good Laboratory Practice (1998) with the following exceptions: 1) Routine water and royal jelly diet contaminant screening analyses for pesticides, PCBs, toxic metals, and antibiotics was conducted using standard U.S. EPA procedures by GeoLabs, Inc., Braintree, Massachusetts and the U.S. Department of Agriculture, Gastonia, North Carolina, and are considered facility records under Smithers Viscient's Standard Operating Procedures and 2) The reference toxicant, Dimethoate, was purchased from a commercial supplier and was not characterized in accordance with GLP Standards.
Observed adverse effects on bees at respective dosages	The study author determined a significant reduction in larval survival among honey bees exposed to levels >8.5 µg ai/larva/day compared to the negative control. On Day 8, there was 100% mortality among larvae in the 25.0 µg ai/larva/day treatment level and therefore, no pupae were present in the 25.0 µg ai/larva/day treatment. This treatment level was excluded from statistical analysis of the pupal survival endpoint.

Guideline Criteria	Reported Information
	Weight was not recorded for organisms in the 25.0 µg ai/larva/day treatment due to 100% mortality among organisms in this treatment level.
	On Day 8, no uneaten diet was reported for any of the surviving larvae.
	On Days 6 and 7, two, one, zero, nine, and two replicates were observed to be small in size in the 0.35, 1.0, 2.8, 8.5, and 25.0 µg ai/larva/day treatment groups compared to one and seven replicates observed to be small in size in the negative and solvent controls, respectively.
Control and Solvent Control Mortality	D8 Cumulative Mortality
	Negative control: 0%
	Solvent control: 3%
	D15 Cumulative Mortality
	Negative Control: 3%
	Solvent control: 11%
	D22 Cumulative Mortality
	Negative control: 6%
	Solvent control: 14%
Were raw data included?	Raw data for D1-D8 and for D15 were included. Otherwise, summary tables were provided.
Analytical Analysis?	Yes, conducted in-house at Smithers Viscient with liquid chromatography with tandem mass spectrometry detection (LC-MS/MS).

Mortality and Observations:

On Day 8, cumulative larval mortality was 0 and 3% in the negative and solvent controls,

respectively, compared to mortality ranging from 0 to 100% in the treatment groups (Table 1). On Day 8, there was 100% mortality among larvae in the 25.0 μ g ai/larva/day treatment level and therefore, no pupae were present in the 25.0 μ g ai/larva/day treatment. By Day 15, cumulative mortality averaged 3 and 11% in the negative and solvent controls, respectively, compared to mortality ranging from 3 to 100% in the treatment groups (Table 2). On Day 22, the adult emergence rate was 94 and 86% in the negative and solvent controls, respectively, compared to emergence ranging from 0 to 97% in the treatment groups (Table 2).

The study author determined a statistically significant reduction in larval survival among honey bees exposed to levels >8.5 μ g ai/larva/day compared to the negative control. This treatment level was excluded from the study author's statistical analysis of the pupal survival endpoint.

Weight was not recorded for organisms in the 25.0 μg ai/larva/day treatment due to 100% mortality among organisms in this treatment level.

On Day 8, no uneaten diet was reported for any of the surviving larvae.

On Days 6 and 7, two, one, zero, nine, and two replicates were observed to be small in size in the 0.35, 1.0, 2.8, 8.5, and 25.0 µg ai/larva/day treatment groups compared to one and seven replicates observed to be small in size in the negative and solvent controls, respectively.

Table 1. Cumulative honey bee larval mortality data after repeated dietary exposure (dose) of Ipconazole^a.

Mean Measured Concentration (Measured Daily Dietary Dose)	Number Exposed	Day 4 % Mortality	Day 5 % Mortality	Day 6 % Mortality	Day 7 % Mortality	Day 8 % Mortality
Negative Control	36	0	0	0	0	0
Solvent Control	36	0	0	3	3	3
8.8 μg ai/g diet (0.35 μg ai/larva/day)	36	0	0	0	0	0
25 μg ai/g diet (1.0 μg ai/larva/day)	36	0	0	0	0	3
68 μg ai/g diet (2.8 μg ai/larva/day)	36	0	0	0	0	0
210 μg ai/g diet (8.5 μg ai/larva/day)	36	0	0	0	0	0
630 μg ai/g diet (25.0 μg ai/larva/day)	36	0	19	94	97	100
Nominal Dose Dimethoate 7.4 μg ai/larva	36	19	42	75	78	81

^a Data based on % survival data obtained from Table 5 on p. 39 of the MRID.

Table 2. Cumulative honey bee pupal mortality, adult emergence, and weight at emergence data after repeated dietary exposure (dose) of Ipconazole.

Mean Measured Concentration (Measured Daily Dietary Dose)	Number Exposed	Day 15 % Mortality ^a	Day 22 % Mortality ^b	Day 22 Adult % Emergence ^b	Mean Adult Weight at Emergence (g), Mean (SD) ^c
Negative Control	36	3	6	94	0.1044 (0.0103)
Solvent Control	36	11	14	86	0.1031 (0.0118)
8.8 μg ai/g diet (0.35 μg ai/larva/day)	36	6	6	94	0.1014 (0.0142)
25 μg ai/g diet (1.0 μg ai/larva/day)	36	3	3	97	0.1028 (0.0118)
68 μg ai/g diet (2.8 μg ai/larva/day)	36	3	8	92	0.1001 (0.0114)
210 μg ai/g diet (8.5 μg ai/larva/day)	36	11	14	86	0.1008 (0.0153)
630 μg ai/g diet (25.0 μg ai/larva/day)	36	100	100	0	N/A

^a Calculated by the reviewer based on replicate data for cumulative # dead obtained from p. 129-135 of the MRID.

Reported Statistics:

CETIS Version 1.8 (2013) was used to perform all statistical analysis.

Fisher's Exact Test indicated that the day 3 to 8 larval survival data for the negative control and solvent control data were not significantly different. Therefore, treatment data were compared to the negative control data to define treatment effects.

The treatment data were tested for normality and homogeneity of variance using the appropriate qualifying test. LOAEL/LOAEC and NOAEL/NOAEC values for larval survival, pupal survival, and adult percent emergence were determined by Fisher's Exact Test with Bonferroni-Holm's Adjustment. LOAEL/LOAEC and NOAEL/LOAEC values for weight at adult emergence were determined by Dunn's Test with Bonferroni-Holm's Adjustment. All comparisons for determination of a NOAEL/LOAEL and NOAEC/LOAEC were made at \geq 95% level of certainty (p \leq 0.05) and compared on a per replicate basis. The replicate unit was the individual larva/bee since they were reared in an individual cell.

^b Data obtained from Table 6 on p. 40 of the MRID.

^c Data obtained from Table 7 on p. 41 of the MRID.

N/A Not applicable

The model selected within CETIS to estimate LD_x/LC_x values was determined by the data. If $\geq 50\%$ mortality was observed, then the LD_{50}/LC_{50} and 95% confidence intervals were calculated. If no treatment level tested resulted in $\geq 50\%$ mortality, then the LD_{50}/LC_{50} values were empirically estimated to be greater than the highest dose and concentration tested, respectively.

If \geq 50% reduction in adult percent emergence or weight was observed, then the appropriate statistical model within CETIS Version 1.8 was used to determine the ED₅₀/EC₅₀ values. If no treatment level tested resulted in \geq 50% reduction in the endpoint, the ED₅₀/EC₅₀ values were empirically estimated to be greater than the highest dose and concentration tested, respectively.

On Day 8, there was 100% mortality among larvae in the 100 μ g ai/larva (25.0 μ g ai/larva/day) treatment level and therefore, no pupae were present. This treatment level was excluded from statistical analysis of the pupal survival endpoint.

The study author reported the following, based on the mean measured diet concentrations and measured cumulative doses:

Larval Survival (Day 3 to 8)

LD₅₀: 57 μg ai/larva 95% C.I.: (53 - 60)

NOAEL: 34 μg ai/larva LOAEL: 100 μg ai/larva

LC₅₀: 350 µg ai/g diet 95% C.I.: (330 - 370)

NOAEC: 210 µg ai/g diet LOAEC: 630 µg ai/g diet

Pupal Survival (Day 8 to 22)

Day LD₅₀: $>34 \mu g$ ai/larva 95% C.I.: N/A

NOAEL: 34 μg ai/larva LOAEL: >34 μg ai/larva

Day LC₅₀: $>210 \,\mu g \,ai/g \,diet$ 95% C.I.: N/A

NOAEC: 210 µg ai/g diet LOAEC: >210 µg ai/g diet

Adult Emergence

ED₅₀: 50 μ g ai/larva 95% C.I.: (44 – 57)

NOAEL: 34 μg ai/larva LOAEL: >34 μg ai/larva

EC₅₀: 310 μ g ai/g diet 95% C.I.: (280 – 360)

NOAEC: 210 µg ai/g diet LOAEC: >210 µg ai/g diet

Adult Weight at Emergence

22-Day ID₅₀: >34 μg ai/larva 95% C.I.: N/A

NOAEL: 34 μg ai/larva LOAEL: >34 μg ai/larva

22-Day IC₅₀: >210 μg ai/g diet 95% C.I.: N/A

NOAEC: 210 µg ai/g diet LOAEC: >210 µg ai/g diet

Reviewer's Statistical Analysis:

Statistical method: Larval mortality, day 15 mortality, adult emergence, and emerged bee weight data were analyzed using CETIS statistical software version 1.9.5.3 with database backend settings implemented by EFED on 7/25/17. Four test records were established in CETIS named "50451002 dc" and "50451002 dd" for measured diet concentrations and measured daily dietary doses to capture mortality (day 8 and day 15) endpoint data and "50451002 dc2" and "50451002 dd2" to capture adult emergence and bee weight endpoint data, as replicate data were not provided for these endpoints.

Negative and solvent control data for day 15 mortality and larval mortality were compared using an Equal Variance t Two-Sample test ($\alpha = 0.05$) and no statistically significant differences were noted. Negative and solvent control data for emergence were compared using a Fisher Exact test ($\alpha = 0.05$) with no significant difference noted. Bee weight negative and solvent control data could not be compared. However, the bee weights were very similar in the controls. All further hypothesis testing was conducted comparing treatment data to negative control data only.

Treatment data for day 15 mortality, larval mortality, and adult emergence were compared to negative control data using a Fisher Exact/Bonferroni-Holm test (α = 0.05). Bee weight data were evaluated using a Jonckheere-Terpstra Step-Down test (α = 0.05), as a Mann-Whitney U Two-Sample test could not be used.

LC/LD/EC/ED₅₀ values for larval mortality, day 15 mortality, and adult emergence were estimated using the Trimmed or Untrimmed Spearman-Kärber method, because linear regression was not appropriate for the data (either the method couldn't be performed or there weren't calculable 95 confidence limits). Due to a lack of bee weight data for the highest treatment level as a result of 100% mortality and an absence of significant effects at any treatment level, the IC/ID₅₀ values for bee weight were empirically estimated as greater than the second highest concentration or dose tested.

	Mortality (Day 8)	Mortality (Day 15)	Adult Emergence	Weight
Diet	LC ₅₀ : 353	LC ₅₀ : 332	EC ₅₀ : 313	IC ₅₀ : >210
Concentration	95% CI: 333 to 375	95% CI: 298 to 370	95% CI: 275 to 357	95% CI: N/A
(µg ai/g diet)	Slope: N/A	Slope: N/A	Slope: N/A	Slope: N/A
	NOAEC: 210	NOAEC: 210	NOAEC: 210	NOAEC: 210
	LOAEC: 630	LOAEC: 630	LOAEC: 630	LOAEC: >210
Dietary Dose	LD ₅₀ : 14	LD ₅₀ : 13	ED ₅₀ : 13	ID_{50} : >8.5
(μg	95% CI: 13 to 15	95% CI: 12 to 15	95% CI: 11 to 14	95% CI: N/A
ai/larva/day)	Slope: N/A	Slope: N/A	Slope: N/A	Slope: N/A
	NOAEL: 8.5	NOAEL: 8.5	NOAEL: 8.5	NOAEL: 8.5
	LOAEL: 25.0	LOAEL: 25.0	LOAEL: 25.0	LOAEL: >8.5

13. <u>REVIEWER'S COMMENTS</u>:

The reviewer's and study author's findings based on the diet concentrations were in complete agreement over the bee weight endpoint toxicity values and in general agreement with the larval mortality and adult emergence endpoint toxicity values. The NOAEC values for emergence were in agreement, while the LOAEC values were not because the study author excluded the highest test level from the determination of the LOAEC. The reviewer analyzed day 15 mortality whereas the study author instead analyzed day 22 survival, so these endpoint toxicity values were not comparable. The study author reported in terms of measured cumulative doses and the reviewer reported in terms of measured daily dietary doses, but the results based on the diet concentrations were sufficient for comparative purposes. The reviewer's findings are presented in the Conclusions and Reviewer's Conclusions sections of this DER.

All three validity criteria were met for the OECD draft guidance followed:

- 1. Cumulative larval mortality across all control replicates from D3 to D8 was ≤15%.
- 2. Adult emergence across all control replicates on D22 was \geq 70%.
- 3. Cumulative larval mortality in the positive control of Dimethoate on D8 was $\geq 50\%$.

A non-GLP diet trial was conducted under Smithers Viscient Study Number 11106.6107. The objective of the trial was to determine the solubility, homogeneity, and 4-day stability of Ipconazole in royal jelly diet at relevant dose rates. Based on the results of this trial, it was concluded that reproducible diet concentrations equivalent to $100~\mu g$ ai/larva could be prepared in royal jelly diet for this testing. In addition, the results demonstrated that Ipconazole was stable in the diets for up to 4 days. The functionally soluble portion of the sucrose diet dosed at the equivalency of $100~\mu g$ ai/bee/day yielded mean recoveries of 32% in the 50% sucrose solution diet and 22% in the 67% sucrose solution diet. These represent the maximum achievable concentration (equivalent to $32~\mu g$ ai/bee/day) in 50% sucrose solution diet during definitive testing. Based on the higher recoveries noted in 50% sucrose solution diet, 50% sucrose solution

diet was used to prepare the diets in the definitive test.

The in-life phase of this study was conducted from June 7 to June 28, 2017.

14. REVIEWER'S CONCLUSIONS:

Based on these results, the most sensitive endpoint was percent emergence, and the 22-day NOAEC and EC $_{50}$ were determined to be 210 and 313 μg ai/g diet, respectively, corresponding to a NOAEL and ED $_{50}$ of 8.5 and 13 μg ai/larva/day, respectively. Larval mortality, day 15 mortality, and adult emergence were significantly affected at the highest treatment level of 630 μg ai/g diet (or 25 μg ai/larva/day on a daily dietary dose basis). Emerged bee weight was unaffected.

15. <u>REFERENCES</u>:

Ives, M., 2013. CETIS, Comprehensive Environmental Toxicity Information SystemTM, User's Guide. Tidepool Scientific Software, McKinleyville, California.

Schmehl. D.R., H.V.V. Tomé, A. N. Morttensen, G. Ferreira Martins and J. D. Ellis, 2016. Protocol for the in vitro rearing of honey bee (*Apis mellifera* L.) workers. Journal of Apicultural Research. Volume 55, No. 2. 113 - 129 pp.

All other references were standard guidelines or methodologies.

CETIS Summary Report	Report Date:	13 May-19 15:33 (p 1 of 3)
•	Test Code/ID:	50451002 dc / 00-7735-3922

								Tes	t Code/ID	: 5045′	1002 dc / 00-	-7735-3	922
Special Study	/ Honey bee Larv	al Chronic	Oral To	xicity, 21-day S	Study						Smither	s Viscie	ent
Batch ID:	18-4129-6219	Test	Type:	ype: OECD 2014 HB Larval Repeat Exp					lyst:				
Start Date:	09 Jun-17			Larval Chronic			Stu		ent:				
Ending Date:	28 Jun-17	Spec	ies:	Apis mellifera				Brir	ie:				
Test Length:	19d 0h	Taxo	n:					Sou	rce: V	Vood's Beekeep	ping Supply,	Age: <	:24
Sample ID:	12-5729-0907	Code	9 :	50451002 dc				Pro	ject: F	ungicide			
Sample Date:	09 Jun-17	Mate	rial:	Ipconazole				Sou	rce: K	Cureha Corpora	tion		
Receipt Date:	28 Jun-17	CAS	(PC):					Stat	ion:				
Sample Age:	n/a	Clier	nt:	CDM Smith									
125618 50451002, mean-measured diet concentrations (ug ai/g diet), larval and d15 mortality data, stats performed by A. Graff													
Single Compa	arison Summary												
Analysis ID	Endpoint			arison Method				P-Value		arison Result			S
	Day 15 Mortality	,	•	Variance t Two-	•			0.1689		t Blank passed			1
01-4910-8732	Larval Mortality		Equal	Variance t Two-	Sample Tes	t		0.3208	Solven	t Blank passed	larval morta	lity	1
Multiple Com	parison Summar	ry											
Analysis ID	Endpoint		Comp	arison Method			1	NOEL	LOEL	TOEL	TU	PMSD	S
07-6727-4899	Day 15 Mortality	,	Fisher	Exact/Bonferror	ni-Holm Tes	t	1	210	630	363.7		n/a	1
20-7378-5920	Larval Mortality		Fisher	Exact/Bonferror	ni-Holm Tes	t	1	210	630	363.7		n/a	1
Point Estimat	e Summary												
Analysis ID	Endpoint		Point	Estimate Metho	od		✓	Level	μg ai/g	95% LCL	95% UCL	TU	S
	Day 15 Mortality		Trimm	ed Spearman-K	ärber		1	LC50	332	298	370		1
18-7051-1920	Larval Mortality		Spearr	man-Kärber				LC50	353	333	375		1
Day 15 Mortal	lity Summary												
Conc-µg ai/g	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std Eri	r Std Dev	CV%	%Effe	ct
0	S	36	0.111	0.003	0.219	0.000		1.000	0.053	0.319	286.85%	0.00%)
0	N	36	0.028	0.000	0.084	0.000		1.000	0.028	0.167	600.00%	-9.38%	
8.8		36	0.056	0.000	0.134	0.000		1.000	0.039	0.232	418.16%	-6.25%	
25		36	0.028	0.000	0.084	0.000		1.000	0.028	0.167	600.00%	-9.38%	
68		36	0.028	0.000	0.084	0.000		1.000	0.028	0.167	600.00%	-9.38%	
210		36	0.111	0.003	0.219	0.000		1.000	0.053	0.319	286.85%	0.00%)
630		36	1.000	1.000	1.000	1.000		1.000	0.000	0.000	0.00%	100.00	0%
Larval Mortali	Larval Mortality Summary												
Conc-µg ai/g	Code	Count	Mean	95% LCL	95% UCL	Min		Max	Std Eri		CV%	%Effe	
0	S	36	0.028	0.000	0.084	0.000		1.000	0.028	0.167	600.00%	0.00%	
0	N	36	0.000	0.000	0.000	0.000		0.000	0.000	0.000		-2.86%	
8.8		36	0.000	0.000	0.000	0.000		0.000	0.000	0.000	000 000	-2.86%	
25		36	0.028	0.000	0.084	0.000		1.000	0.028	0.167	600.00%	0.00%	
68		36	0.000	0.000	0.000	0.000		0.000	0.000	0.000		-2.86%	
210		36	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.0007	-2.86%	
630		36	1.000	1.000	1.000	1.000		1.000	0.000	0.000	0.00%	100.00	ს%

13 May-19 15:33 (p 2 of 3) 50451002 dc / 00-7735-3922

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Conc-µg ai/g	Code			Day 15 Mortality Detail									
		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
0	S	0.000	1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000						
0	N	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000						
8.8		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000						
25		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000						
68		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000						
210		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000		
		0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000		
		0.000	0.000	0.000	0.000	0.000	0.000						
630		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
		1.000	1.000	1.000	1.000	1.000	1.000						

13 May-19 15:33 (p 3 of 3) 50451002 dc / 00-7735-3922

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Larval Mortality Detail											
Conc-µg ai/g	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	S	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000				
0	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000				
8.8		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000				
25		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000				
68		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000				
210		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000				
630		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
		1.000	1.000	1.000	1.000	1.000	1.000				

CETIS Summary Report	Report Date:	13 May-19 15:48 (p 1 of 2)
•	Test Code/ID:	50451002 dc2 / 12-7549-8092

								Test					
Special Study	Honey bee Lar	val Chronic O	ral Toxi	city, 21-day S	Study						Smither	s Viscie	ent
Start Date:	07-1149-6742 09 Jun-17	Protoc	ol: La	ECD 2014 HE		•	tudy		ent:				
Ending Date: Test Length:		Specie Taxon		pis mellifera				Brine Sour		od's Beekee	nina Sunnly	Δαρ	-24
				2454000 0							ping Cuppiy,	Age. \	
Sample ID: Sample Date:	17-2514-5005	Code: Materi		0451002 dc2 conazole				Proje Sour		ngicide robo Corporo	tion		
Receipt Date:		CAS (F		Conazole				Stati		reha Corpora	uon		
Sample Age:		Client	-	DM Smith				Otati	O11.				
125618 504510	002, mean-meas	sured diet conc	entration	ns (ug ai/g die	t), emergen	ce and bee	e we	eight data	, stats perfo	ormed by A. (Graff		
SIngle Compa	rison Summary	/											
Analysis ID	Endpoint			ison Method			F	P-Value	•	ison Result			;
17-0947-4374	Adult Emergend	ce Rate F	Fisher Ex	xact Test			0).4290	Solvent E	Blank passed	adult emerg	ence ra	at '
Multiple Comp	parison Summa	nry											
	Endpoint			ison Method			/ N	NOEL	LOEL	TOEL	TU	PMSE)
	Adult Emergend			xact/Bonferro			2	210	630	363.7		n/a	
10-2022-3770	122-3770 Emerged Bee Weight Jonckheere-Terpstra Step-Down Test						2	210	>210	n/a		n/a	
Point Estimate	Summary												
	Endpoint			timate Metho		•		_evel	μg ai/g	95% LCL	95% UCL	TU	
07-7337-8053	Adult Emergend	ce Rate (GLM: Lo	g-Normal (Pro	obit)			EC1	15.8	n/a	n/a		
								EC5	35.9	n/a	n/a		
								EC10 EC15	55.4 74.4	n/a n/a	n/a n/a		
								EC20	94	n/a	n/a		
								EC25	115	n/a	n/a		
								EC40	190	n/a	n/a		
								EC50	258	n/a	n/a		
00-0921-7356	Adult Emergend	ce Rate S	Spearma	an-Kärber				C50	313	275	357		
Adult Emerger	nce Rate Sumn	nary											
							_	Иaх	Std Err	Std Dev	CV%	0/ Ess-	
Conc-µg ai/g	Code	Count I	Mean	95% LCL	95% UCL	Min	^					%Effe	ct
	Code S		Mean 0.861	95% LCL	95% UCL	Min 0.861).861	0.000	0.000	0.00%	0.00%	
0		1 (95% LCL	95% UCL		0).861).944					, 0
0	S	1 ().861	95% LCL	95% UCL	0.861 0.944 0.944	0).944).944	0.000 0.000 0.000	0.000 0.000 0.000	0.00% 0.00% 0.00%	0.00% -9.68% -9.68%	% % %
0 0 8.8 25	S	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1).861).944).944).972	95% LCL	95% UCL	0.861 0.944 0.944 0.972	0).944).944).972	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.00% 0.00% 0.00% 0.00%	0.00% -9.68% -9.68% -12.90	% % % 0%
0 0 8.8 25 68	S	1 (C)).861).944).944).972).917	95% LCL	95% UCL	0.861 0.944 0.944 0.972 0.917	0 0 0).944).944).972).917	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.00% 0.00% 0.00% 0.00% 0.00%	0.00% -9.68% -9.68% -12.90 -6.45%	% % % 0% 0%
0 0 8.8 25 68 210	S	1 (C)).861).944).944).972).917).861	95% LCL	95% UCL	0.861 0.944 0.944 0.972 0.917 0.861	0 0 0).944).944).972).917).861	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	0.00% 0.00% 0.00% 0.00%	0.00% -9.68% -9.68% -12.90 -6.45% 0.00%	% % % 0% % %
0 0 8.8 25 68 210 630	S N	1 (C)).861).944).944).972).917	95% LCL	95% UCL	0.861 0.944 0.944 0.972 0.917	0 0 0).944).944).972).917	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.00% 0.00% 0.00% 0.00% 0.00%	0.00% -9.68% -9.68% -12.90 -6.45%	% % % 0% % %
0 0 8.8 25 68 210 630 Emerged Bee	S N Weight Summa	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()	0.861 0.944 0.944 0.972 0.917 0.861 0.000			0.861 0.944 0.944 0.972 0.917 0.861 0.000	0 0 0	0.944 0.944 0.972 0.917 0.861 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00% 0.00% 0.00% 0.00% 0.00%	0.00% -9.68% -9.68% -12.90 -6.45% 0.00% 100.00	/, // // // // // // //
0 0 8.8 25 68 210 630 Emerged Bee Conc-µg ai/g	S N Weight Summa Code	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()	0.861 0.944 0.944 0.972 0.917 0.861 0.000		95% UCL	0.861 0.944 0.944 0.972 0.917 0.861 0.000	0 0 0 0 0	0.944 0.944 0.972 0.917 0.861 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00% 0.00% 0.00% 0.00% 0.00%	0.00% -9.68% -9.68% -12.90 -6.45% 0.00% 100.00	% % % 0% 6
0 0 8.8 25 68 210 630 Emerged Bee Conc-µg ai/g	S N Weight Summa Code S	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()	0.861 0.944 0.944 0.972 0.917 0.861 0.000 Mean			0.861 0.944 0.944 0.972 0.917 0.861 0.000 Min	0 0 0 0 0 0	0.944 0.944 0.972 0.917 0.861 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std Err	0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std Dev	0.00% 0.00% 0.00% 0.00% 0.00%	0.00% -9.68% -9.68% -12.90 -6.45% 0.00% 100.00	% % % 0% 6
0 0 8.8 25 68 210 630 Emerged Bee Conc-µg ai/g	S N Weight Summa Code	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()	0.861 0.944 0.944 0.972 0.917 0.861 0.000 Mean 0.103 0.104			0.861 0.944 0.944 0.972 0.917 0.861 0.000 Min 0.103 0.104	0 0 0 0 0 0 0	0.944 0.944 0.972 0.917 0.861 0.000 Max 0.103	0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std Err 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std Dev	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% -9.689 -9.689 -12.90 -6.459 0.00% 100.00 %Effe 0.00% -1.269	% % % % % % % % % % % % % % % ** ** ** *
0 0 8.8 25 68 210 630 Emerged Bee Conc-µg ai/g 0 0 8.8	S N Weight Summa Code S	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()	0.861 0.944 0.944 0.972 0.917 0.861 0.000 Mean 0.103 0.104			0.861 0.944 0.944 0.972 0.917 0.861 0.000 Min 0.103 0.104 0.101	00 00 00 00 00 00 00 00 00 00 00 00 00	0.944 0.944 0.972 0.917 0.861 0.000 Max 0.103 0.104 0.101	0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std Err 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std Dev	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% -9.689 -12.90 -6.459 0.00% 100.00 -1.269 1.65%	% % % % % % % % % % % % ** ** ** ** ** *
Conc-µg ai/g 0 0 8.8 25 68 210 630 Emerged Bee Conc-µg ai/g 0 0 8.8 25 68	S N Weight Summa Code S	1 (C)	0.861 0.944 0.944 0.972 0.917 0.861 0.000 Mean 0.103 0.104			0.861 0.944 0.944 0.972 0.917 0.861 0.000 Min 0.103 0.104	00 00 00 00 00 00 00 00	0.944 0.944 0.972 0.917 0.861 0.000 Max 0.103	0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std Err 0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std Dev	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% -9.689 -9.689 -12.90 -6.459 0.00% 100.00 %Effe 0.00% -1.269	% % % % % % % % % % % % % % % % % % %

CETIS Summary Report

Report Date: 13 May-19 15:48 (p 2 of 2) **Test Code/ID:** 50451002 dc2 / 12-7549-8092

			Test Code/ID:	50451002 dc2 / 12-7549-8092
Special Study H	oney bee La	rval Chronic Oral Toxicity, 21-day Study		Smithers Viscient
Adult Emergenc	e Rate Deta	il		
Conc-µg ai/g	Code	Rep 1		
0	S	0.861		
0	N	0.944		
8.8		0.944		
25		0.972		
68		0.917		
210		0.861		
630		0.000		
Emerged Bee W	eight Detail			
Conc-µg ai/g	Code	Rep 1		
0	S	0.103		
0	N	0.104		
8.8		0.101		
25		0.103		
68		0.1		
210		0.101		
630				

13 May-19 15:30 (p 1 of 3) 50451002 dd / 15-1302-1777

Special Study	Honey bee Larv	val Chronic O				Smithers	s Visci	ent					
Batch ID:	03-8153-6585	Test T	ype: OECE	2014 HB	Larval Rep	eat Exp		Analyst:					
Start Date:	09 Jun-17	Protoc	col: Larva	l Chronic (Oral Toxicity	, 21-day Stu	udy	Diluent:					
Ending Date:	28 Jun-17	Specie	es: Apis r	mellifera				Brine:					
Test Length:	19d 0h	Taxon	:					Source:	Woo	d's Beekeep	ing Supply,	Age:	<24
Sample ID:	08-0674-4220	Code:	50451	1002 dd				Project:	Fung	icide			
Sample Date:	09 Jun-17	Materi	ial: Ipcona	azole				Source:	Kure	na Corporat	ion		
Receipt Date:	28 Jun-17	CAS (F	PC):					Station:					
Sample Age:	n/a	Client:	: CDM	Smith									
	e Summary Endpoint Day 15 Mortality	F	Point Estima	ate Metho	od	/	Leve	el ua/l	arv/da	05% 01			
Jb-b192-b801	Day 15 Mortality	, I	Trimmed Spe		ärber					95% LCL 12		TU	1
	Larval Mortality		Trimmed Spo Spearman-K	earman-Kä	ärber		LC5	0 13.3			95% UCL 14.8 15	TU	1 1
09-8870-1578	Larval Mortality			earman-Kä	ärber		LC5	0 13.3		12	14.8	TU	1 1
09-8870-1578 Day 15 Mortali	Larval Mortality	5	Spearman-K	earman-Kä	ärber 95% UCL		LC5	0 13.3 0 14.2		12	14.8	TU %Effe	1 1
09-8870-1578 Day 15 Mortali Conc-µg/larv/c	Larval Mortality	Count M	Spearman-K	earman-Kä ärber		✓	LC5 LC5	0 13.3 0 14.2	Err	12 13.3	14.8 15		1 1 ect
09-8870-1578 Day 15 Mortali Conc-µg/larv/o	Larval Mortality ity Summary da Code	Count M 36 0	Spearman-K Mean 9 0.111 0	earman-Kä ärber 95% LCL	95% UCL	Min	LC5 LC5	0 13.3 0 14.2 : Std	Err 3	12 13.3 Std Dev	14.8 15	%Effe	1 1 ect
	Larval Mortality ity Summary da Code S	Count M 36 0	Mean 9 0.111 0 0.028 0	earman-Ka Gärber 95% LCL 0.003	95% UCL 0.219	Min 0.000	LC5 LC5 Max	0 13.3 0 14.2 Std 0 0.05 0 0.05	Err 3	12 13.3 Std Dev 0.319	14.8 15 CV% 286.85%	%Effe	1 1 ect 6 %

Larval M	ortality	Summary
----------	----------	---------

36

36

36

0.028

0.111

1.000

0.000

0.003

1.000

2.8

8.5

25

	-										
Conc-µg/larv/da	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	S	36	0.028	0.000	0.084	0.000	1.000	0.028	0.167	600.00%	0.00%
0	N	36	0.000	0.000	0.000	0.000	0.000	0.000	0.000		-2.86%
0.35		36	0.000	0.000	0.000	0.000	0.000	0.000	0.000		-2.86%
1		36	0.028	0.000	0.084	0.000	1.000	0.028	0.167	600.00%	0.00%
2.8		36	0.000	0.000	0.000	0.000	0.000	0.000	0.000		-2.86%
8.5		36	0.000	0.000	0.000	0.000	0.000	0.000	0.000		-2.86%
25		36	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	100.00%

0.084

0.219

1.000

0.000

0.000

1.000

1.000

1.000

1.000

0.028

0.053

0.000

0.167

0.319

0.000

600.00%

286.85%

0.00%

-9.38%

0.00% 100.00%

13 May-19 15:30 (p 2 of 3) 50451002 dd / 15-1302-1777

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Day 15 Mortality Detail												
Conc-µg/larv/da	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	
0	S	0.000	1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
0	N	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
0.35		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
1		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
2.8		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
8.5		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
25		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
		1.000	1.000	1.000	1.000	1.000	1.000					

13 May-19 15:30 (p 3 of 3) 50451002 dd / 15-1302-1777

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Larval Mortality Detail												
Conc-µg/larv/da	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10	
0	S	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
0	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
0.35		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
1		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
2.8		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
8.5		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.000	0.000	0.000	0.000	0.000	0.000					
25		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
		1.000	1.000	1.000	1.000	1.000	1.000					

13 May-19 15:31 (p 1 of 1) 50451002 dd2 / 10-6855-4371

Special Study H	Honey bee Larval	Chronic Oral To		Smithers Viscient	
		Test Type: Protocol: Species: Taxon:	OECD 2014 HB Larval Repeat Exp Larval Chronic Oral Toxicity, 21-day Study Apis mellifera	Analyst: Diluent: Brine: Source:	Wood's Beekeeping Supply, Age: <24
Sample ID: 1 Sample Date: 0 Receipt Date: 2		Code: Material: CAS (PC):	50451002 dd2 Ipconazole	Project: Source: Station:	Fungicide Kureha Corporation

125618 50451002, measured daily dietary does (ug ai/larva/day), emergence and bee weight data, stats performed by A. Graff

CDM Smith

Client:

Point Estimate Summary

Sample Age: n/a

Analysis ID Endpoint	Point Estimate Method	✓ Level	μg/larv/da	95% LCL	95% UCL	TU	s
19-3170-0600 Adult Emergence Rate	GLM: Log-Normal (Probit)	EC1	0.636	n/a	n/a		1
		EC5	1.44	n/a	n/a		
		EC10	2.23	n/a	n/a		
		EC15	3	n/a	n/a		
		EC20	3.79	n/a	n/a		
		EC25	4.63	n/a	n/a		
		EC40	7.68	n/a	n/a		
		✓ EC50	10.4	n/a	n/a		
03-8851-2540 Adult Emergence Rate	Spearman-Kärber	EC50	12.6	11.1	14.3		1

Adult Emergence Rate Summary

Conc-µg/larv/da	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	S	1	0.861			0.861	0.861	0.000	0.000	0.00%	0.00%
0	N	1	0.944			0.944	0.944	0.000	0.000	0.00%	-9.68%
0.35		1	0.944			0.944	0.944	0.000	0.000	0.00%	-9.68%
1		1	0.972			0.972	0.972	0.000	0.000	0.00%	-12.90%
2.8		1	0.917			0.917	0.917	0.000	0.000	0.00%	-6.45%
8.5		1	0.861			0.861	0.861	0.000	0.000	0.00%	0.00%
25		1	0.000			0.000	0.000	0.000	0.000		100.00%

Adult Emergence Rate Detail

Conc-µg/larv/da	Code	Rep 1
0	S	0.861
0	N	0.944
0.35		0.944
1		0.972
2.8		0.917
8.5		0.861
25		0.000

Report Date: Test Code/ID:

13 May-19 15:32 (p 1 of 2) 50451002 dc / 00-7735-3922

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Analysis ID:	02-8790-3949	Endpoint:	Day 15 Mortality	CETIS Version:	CETISv1.9.5
•		•			

Analyzed: 13 May-19 13:59 Analysis: Parametric-Two Sample Status Level: 1

Batch ID:18-4129-6219Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

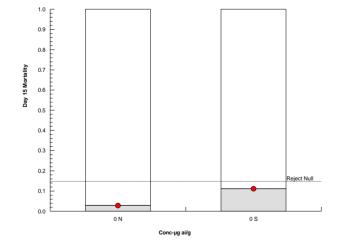
Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

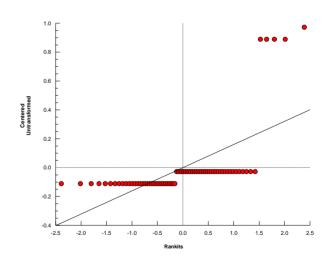
Data Transform	Alt Hyp	Comparison Result	PMSD
Untransformed	C <> T	Solvent Blank passed day 15 mortality	12.30%

Equal Variance t Two-Sample Test

Control	vs	Control II	Test Stat	Critical	MSD	DF P-Type	P-Value	Decision(α:5%)
Negative Control		Solvent Blank	1.39	1.99	0.12	70 CDF	0.1689	Non-Significant Effect

ANOVA Table


Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.125	0.125	1	1.93	0.1689	Non-Significant Effect
Error	4.52778	0.0646825	70			
Total	4.65278		71			


ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Variance Ratio F Test	3.66	2.44	2.3E-04	Unequal Variances
Distribution	Shapiro-Wilk W Normality Test	0.4	0.954	1.3E-15	Non-Normal Distribution

Day 15 Mortality Summary

Conc-µg ai/g	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	S	36	0.111	0.003	0.219	0.000	0.000	1.000	0.053	286.85%	0.00%
0	N	36	0.028	0.000	0.084	0.000	0.000	1.000	0.028	600.00%	-9.38%

Report Date: Test Code/ID:

13 May-19 15:32 (p 2 of 2) 50451002 dc / 00-7735-3922

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study Smithers Viscient

Analysis ID: 01-4910-8732 Endpoint: Larval Mortality CETIS Version: CETISv1.9.5

Analyzed: 13 May-19 13:59 Analysis: Parametric-Two Sample Status Level: 1

Batch ID:18-4129-6219Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

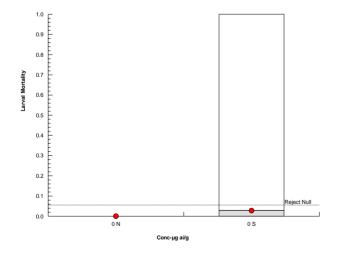
Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

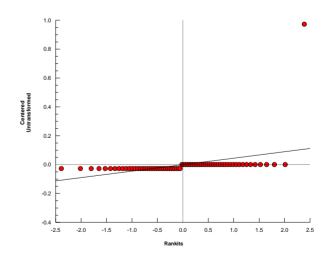
Data Transform	Alt Hyp	Comparison Result	PMSD
Untransformed	C <> T	Solvent Blank passed larval mortality	5.54%

Equal Variance t Two-Sample Test

Control	vs	Control II	Test Stat	Critical	MSD	DF P-Type	P-Value	Decision(α:5%)
Negative Contr	rol	Solvent Blank	1	1.99	0.055	70 CDF	0.3208	Non-Significant Effect

ANOVA Table


Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.0138889	0.0138889	1	1	0.3208	Non-Significant Effect
Error	0.972222	0.0138889	70			
Total	0.986111		71			


ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variance	Levene Equality of Variance Test	4.24	7.01	0.0432	Equal Variances
	Mod Levene Equality of Variance Test	1	7.01	0.3208	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.159	0.954	2.7E-18	Non-Normal Distribution

Larval Mortality Summary

Conc-µg ai/g	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	S	36	0.028	0.000	0.084	0.000	0.000	1.000	0.028	600.00%	0.00%
0	N	36	0.000	0.000	0.000	0.000	0.000	0.000	0.000		-2.86%

Report Date: Test Code/ID:

13 May-19 15:33 (p 1 of 2) 50451002 dc / 00-7735-3922

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

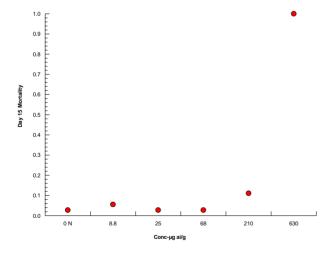
Smithers Viscient

Analysis ID:	07-6727-4899	Endpoint:	Day 15 Mortality	CETIS Version:	CETISv1.9.5

Analyzed: 13 May-19 13:58 Analysis: STP 2xK Contingency Tables Status Level:

Test Type: OECD 2014 HB Larval Repeat Exp Batch ID: 18-4129-6219 Analyst: Protocol: Larval Chronic Oral Toxicity, 21-day Study 09 Jun-17 Start Date: Diluent: Ending Date: 28 Jun-17 Species: Apis mellifera Brine:

Test Length: 19d 0h Taxon: Wood's Beekeeping Supply, Age: <24 Source:


Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C < T	210	630	363.7	

Fisher Exact/Bonferroni-Holm Test

Control v	'S	Group	Test Sta	t P-Type	P-Value	Decision(α:5%)
Negative Contro	ol	8.8	0.500	Exact	1.0000	Non-Significant Effect
		25	0.754	Exact	1.0000	Non-Significant Effect
		68	0.754	Exact	1.0000	Non-Significant Effect
		210	0.179	Exact	0.7140	Non-Significant Effect
		630*	0.000	Exact	4.2E-19	Significant Effect

Data Summary

Conc-µg ai/g	Code	NR	R	NR + R	Prop NR	Prop R	%Effect
0	N	35	1	36	0.972	0.0278	0.0%
8.8		34	2	36	0.944	0.0556	-100.0%
25		35	1	36	0.972	0.0278	0.0%
68		35	1	36	0.972	0.0278	0.0%
210		32	4	36	0.889	0.111	-300.0%
630		0	36	36	0	1	-3500.0%

Report Date: Test Code/ID: 13 May-19 15:33 (p 2 of 2) 50451002 dc / 00-7735-3922

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

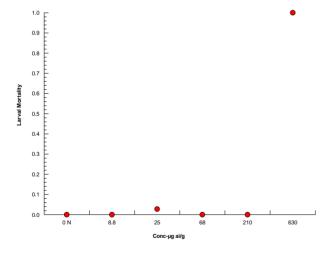
Smithers Viscient

Analysis ID:	20-7378-5920	Endpoint:	Larval Mortality	CETIS Version:	CETISv1.9.5
Analyzed:	13 May-19 13:58	Analysis:	STP 2xK Contingency Tables	Status Level:	1

Batch ID: 18-4129-6219 Test Type: OECD 2014 HB Larval Repeat Exp Analyst:

Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

Test Length:19d 0hTaxon:Source:Wood's Beekeeping Supply, Age: <24</th>


Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C < T	210	630	363.7	

Fisher Exact/Bonferroni-Holm Test

Control v	s	Group	Test Stat	P-Type	P-Value	Decision(α:5%)
Negative Contro	ol	8.8	1.000	Exact	1.0000	Non-Significant Effect
		25	0.500	Exact	1.0000	Non-Significant Effect
		68	1.000	Exact	1.0000	Non-Significant Effect
		210	1.000	Exact	1.0000	Non-Significant Effect
		630*	0.000	Exact	1.1E-20	Significant Effect

Data Summary

Conc-µg ai/g	Code	NR	R	NR + R	Prop NR	Prop R	%Effect
0	N	36	0	36	1	0	
8.8		36	0	36	1	0	
25		35	1	36	0.972	0.0278	
68		36	0	36	1	0	
210		36	0	36	1	0	
630		0	36	36	0	1	

Report Date: Test Code/ID:

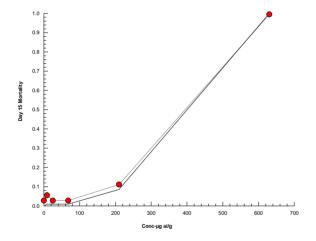
13 May-19 15:32 (p 1 of 2) 50451002 dc / 00-7735-3922

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Analysis ID: 09-9507-1814 **CETIS Version:** CETISv1.9.5 **Endpoint:** Day 15 Mortality

Analysis: Trimmed Spearman-Kärber Analyzed: 13 May-19 13:59 Status Level:


Batch ID: 18-4129-6219 Test Type: OECD 2014 HB Larval Repeat Exp Analyst: Protocol: Larval Chronic Oral Toxicity, 21-day Study Start Date: 09 Jun-17 Diluent: Ending Date: 28 Jun-17 Species: Apis mellifera Brine:

Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

Trimmed Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	LC50	95% LCL	95% UCL
Control Threshold	0.0278	0.95%	2.52	0.0233	332	298	370

Day 15 Mortality	Calculated Variate(A/B)								Isotonic Variate		
Conc-µg ai/g	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	N	36	0.028	0.000	1.000	0.167	600.00%	0.0%	1/36	0.0278	0.0%
8.8		36	0.056	0.000	1.000	0.232	418.00%	2.86%	2/36	0.037	0.95%
25		36	0.028	0.000	1.000	0.167	600.00%	0.0%	1/36	0.037	0.95%
68		36	0.028	0.000	1.000	0.167	600.00%	0.0%	1/36	0.037	0.95%
210		36	0.111	0.000	1.000	0.319	287.00%	8.57%	4/36	0.111	8.57%
630		36	1.000	1.000	1.000	0.000	0.00%	100.0%	36/36	1	100.0%

Report Date: Test Code/ID:

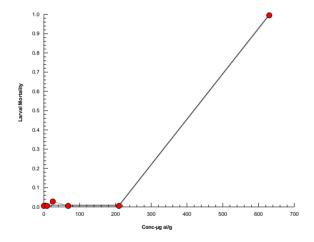
13 May-19 15:32 (p 2 of 2) 50451002 dc / 00-7735-3922

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Analysis ID: 18-7051-1920 Endpoint: Larval Mortality CETIS Version: CETISv1.9.5

Analyzed: 13 May-19 13:59 Analysis: Untrimmed Spearman-Kärber Status Level: 1


Batch ID:18-4129-6219Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	LC50	95% LCL	95% UCL
Control Threshold	0	0.00%	2.55	0.0128	353	333	375

Larval Mortality	Calculated Variate(A/B)							Isotonic Variate			
Conc-µg ai/g	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	N	36	0.000	0.000	0.000	0.000		0.0%	0/36	0	0.0%
8.8		36	0.000	0.000	0.000	0.000		0.0%	0/36	0	0.0%
25		36	0.028	0.000	1.000	0.167	600.00%	2.78%	1/36	0.00926	0.93%
68		36	0.000	0.000	0.000	0.000		0.0%	0/36	0.00926	0.93%
210		36	0.000	0.000	0.000	0.000		0.0%	0/36	0.00926	0.93%
630		36	1.000	1.000	1.000	0.000	0.00%	100.0%	36/36	1	100.0%

Report Date: Test Code/ID:

13 May-19 15:47 (p 1 of 1) 50451002 dc2 / 12-7549-8092

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

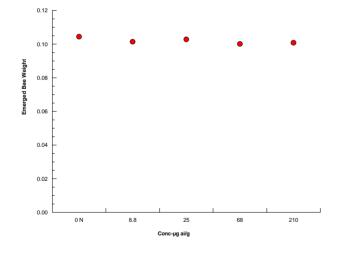
Smithers Viscient

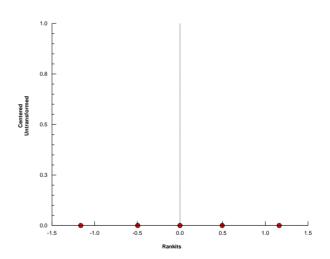
Analysis ID:	10-2022-3770	Endpoint:	Emerged Bee Weight	CETIS Version:	CETISv1.9.5
	40.14 40.44.50			O	

Analyzed: 13 May-19 14:56 Analysis: Nonparametric-Control vs Ord. Treatments Status Level: 1

Batch ID:07-1149-6742Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24


Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C > T	210	>210	n/a	_


Jonckheere-Terpstra Step-Down Test

Control	vs	Conc-µg ai/g	Test Stat	Critical	P-Type	P-Value	Decision(a:5%)
Negative Co	ontrol	8.8	1	n/a	Exact	0.5000	Non-Significant Effect
		25	2	n/a	Exact	0.5000	Non-Significant Effect
		68	5	n/a	Exact	0.1667	Non-Significant Effect
		210	8	n/a	Exact	0.1167	Non-Significant Effect

Emerged Bee Weight Summary

Conc-µg ai/g	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	1	0.104			0.104	0.104	0.104	0	0.00%	0.00%
8.8		1	0.101			0.101	0.101	0.101	0	0.00%	2.87%
25		1	0.103			0.103	0.103	0.103	0	0.00%	1.53%
68		1	0.1			0.1	0.1	0.1	0	0.00%	4.12%
210		1	0.101			0.101	0.101	0.101	0	0.00%	3.45%

Report Date: Test Code/ID: 13 May-19 15:47 (p 1 of 2) 50451002 dc2 / 12-7549-8092

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

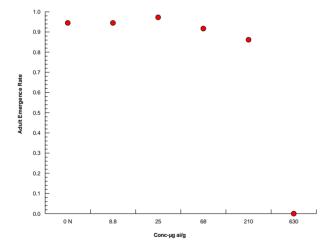
Smithers Viscient

Analysis ID: 02-0038-9439 Endpoint: Adult Emergence Rate CETIS Version: CETISv1.9.5

Analyzed: 13 May-19 14:56 Analysis: STP 2xK Contingency Tables Status Level: 1

Batch ID:07-1149-6742Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24


Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU
Untransformed	C > T	210	630	363.7	

Fisher Exact/Bonferroni-Holm Test

Control vs	Group	Test Stat	P-Type	P-Value	Decision(α:5%)
Negative Control	8.8	0.693	Exact	1.0000	Non-Significant Effect
	25	0.880	Exact	0.8803	Non-Significant Effect
	68	0.500	Exact	1.0000	Non-Significant Effect
	210	0.214	Exact	0.8580	Non-Significant Effect
	630*	0.000	Exact	7.9E-18	Significant Effect

Data Summary

Conc-µg ai/g	Code	NR	R	NR + R	Prop NR	Prop R	%Effect
0	N	34	2	36	0.944	0.0556	0.0%
8.8		34	2	36	0.944	0.0556	0.0%
25		35	1	36	0.972	0.0278	-2.94%
68		33	3	36	0.917	0.0833	2.94%
210		31	5	36	0.861	0.139	8.82%
630		0	36	36	0	1	100.0%

Report Date: Test Code/ID:

13 May-19 15:47 (p 2 of 2) 50451002 dc2 / 12-7549-8092

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Analysis ID: 17-0947-4374 Endpoint: Adult Emergence Rate CETIS Version: CETISv1.9.5

Analyzed: 13 May-19 15:46 Analysis: Single 2x2 Contingency Table Status Level: 1

Batch ID:07-1149-6742Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

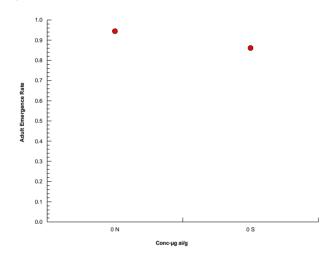
Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

Data Transform	Alt Hyp	Comparison Result
Untransformed	CAT	Solvent Blank passed adult emergence rate

Fisher Exact Test

Ν

Control	vs	Control		Test Stat	P-Type	P-Value	Decision	(α:5%)
Negative Control Solvent Blank		0.429	Exact	0.4290	Non-Significant Effect			
Data Summ	ary							
Conc-µg ai/	'g	Code	NR	R	NR + R	Prop NR	Prop R	%Effect
0		S	31	5	36	0.861	0.139	8.82%


0.0556

0.0%

0.944

Graphics

0

34

2

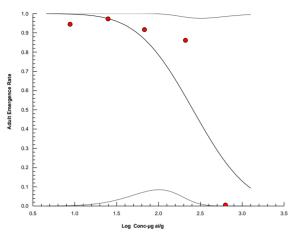
36

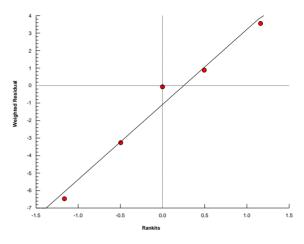
Report Date: Test Code/ID: 13 May-19 15:47 (p 1 of 2) 50451002 dc2 / 12-7549-8092

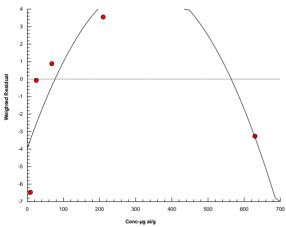
								Tes	Code/ID:	504510	002 dc2 /	12-7549-8092
Specia	l Study Hon	ey bee Larv	/al Chronic	Oral Toxic	ity, 21-day	Study					Smith	ners Viscient
Analys	is ID: 07-7	337-8053	End	point: Ad	ult Emergen	ce Rate		CET	IS Version:	CETISv1	.9.5	
Analyz		/lay-19 14:57		•	ear Regress			Stat	us Level:	1		
Batch I	D : 07-1	149-6742	Tes	t Type: OE	CD 2014 HE	3 Larval Re	peat Exp	Ana	lyst:			
Start D	ate: 09 J	un-17	Prot	t ocol : La	rval Chronic	Oral Toxici	ty, 21-day Stu	udy Dilu	ent:			
Ending	Date : 28 J	un-17	Spe	cies: Ap	is mellifera			Brin	e:			
Test Le	ength: 19d	0h	Tax	on:				Sou	rce: Woo	od's Beekee	ping Supp	oly, Age: <24
Linear	Regression	Options										
Model	Name	Link Fund	tion	Threshol	d Option	Thresh	Optimize	Pooled	Het Corr	Weighted		
Log-No	rmal (Probit)) η=inv Φ[π]	Zero Thre	shold	0	No	No	Yes	Yes		
Regres	sion Summ	ary										
Iters	LL	AICc	BIC	Mu	Sigma	Adj R2	PMSD	F Stat	P-Value	Decision((α:5%)	
10	-26.8	63.5	56.8	2.41	0.521	0.99				Lack of Fi	t Not Test	ted
Point E	stimates											
Level	μg ai/g	95% LCL	95% UCL									
EC1	15.8	n/a	n/a									
EC5	35.9	n/a	n/a									
EC10	55.4	n/a	n/a									
EC15	74.4	n/a	n/a									
EC20	94	n/a	n/a									
EC25	115	n/a	n/a									
EC40	190	n/a	n/a									
EC50	258	n/a	n/a									
Regres	sion Param	eters										
Parame		Estimate	Std Error				P-Value	Decision	<u> </u>			
Intercep	ot	-4.63	2.94	-14	4.73	-1.57	0.2136	•	ificant Paran			
Slope		1.92	1.28	-2.14	5.98	1.5	0.2298	Non-Sign	ificant Paran	neter		
ANOVA	A Table											
Source)	Sum Squa	ares Mea	n Square	DF	F Stat	P-Value	Decision	(α:5%)			
Model		8520	8520	0	1	388	2.9E-04	Significar	nt			
Residua	al	65.9	22		3							
	al Analysis											
Attribu		Method	D // 6==	-	Test Stat		P-Value	Decision	<u> </u>	•		
Model F	-it		Ratio GOF		42.8	7.81	<1.0E-37	•	nt Heterogen	•		
Dietrib	4:		hi-Sq GOF		65.9	7.81	<1.0E-37	0	nt Heterogen	eity		
Distribu	llion	Snapiro-w	ilk W Norm	ality rest	0.976	0.34	0.9122	Normai L	istribution			
	mergence l		•				ulated Variat					
Conc-µ	ıg ai/g	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	B
8.8			1	0.944	0.944	0.944	0.000	0.000	0.00%	0.0%	34	36
25			1	0.972	0.972	0.972	0.000	0.000	0.00%	-2.94%	35	36
68 210			1	0.917 0.861	0.917 0.861	0.917	0.000 0.000	0.000	0.00%	2.94% 8.82%	33	36 36
630			1	0.000	0.000	0.861 0.000	0.000	0.000	0.00%	100.0%	31 0	36
030			'	0.000	0.000	0.000	0.000	0.000		100.070	U	50

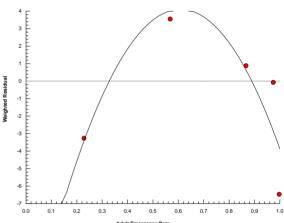
Report Date: Test Code/ID:

13 May-19 15:47 (p 2 of 2) 50451002 dc2 / 12-7549-8092


Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study


Smithers Viscient


Analysis ID:07-7337-8053Endpoint:Adult Emergence RateCETIS Version:CETISv1.9.5Analyzed:13 May-19 14:57Analysis:Linear Regression (GLM)Status Level:1


Graphics

Log-Normal: inv $\Phi[\pi] = \alpha + \beta \cdot \log[x]$

Report Date: Test Code/ID: 13 May-19 15:47 (p 1 of 1) 50451002 dc2 / 12-7549-8092

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Analysis ID:	00-0921-7356	Endpoint:	Adult Emergence Rate	CETIS Version:	CETISv1.9.5
A II	40 May 40 44 57	A I I -	Hatelera and Oraca and Kindora	01-1	4

Analyzed: 13 May-19 14:57 Analysis: Untrimmed Spearman-Kärber Status Level: 1


Batch ID:07-1149-6742Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.0556	0.00%	2.5	0.0281	313	275	357

Adult Emergenc	Calculated Variate(A/B)							Isotonic Variate			
Conc-µg ai/g	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	N	1	0.944	0.944	0.944	0.000	0.00%	0.0%	34/36	0.954	0.0%
8.8		1	0.944	0.944	0.944	0.000	0.00%	0.0%	34/36	0.954	0.0%
25		1	0.972	0.972	0.972	0.000	0.00%	-2.94%	35/36	0.954	0.0%
68		1	0.917	0.917	0.917	0.000	0.00%	2.94%	33/36	0.917	3.88%
210		1	0.861	0.861	0.861	0.000	0.00%	8.82%	31/36	0.861	9.71%
630		1	0.000	0.000	0.000	0.000		100.0%	0/36	0	100.0%

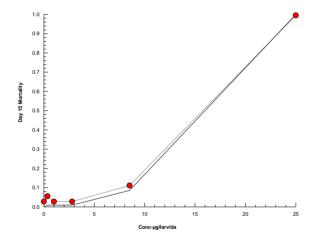
Report Date: Test Code/ID: 13 May-19 15:29 (p 1 of 2) 50451002 dd / 15-1302-1777

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Analysis ID:	06-6192-6801	Endpoint:	Day 15 Mortality	CETIS Version:	CETISv1.9.5

Analyzed: 13 May-19 15:22 Analysis: Trimmed Spearman-Kärber Status Level: 1


Batch ID:03-8153-6585Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

Trimmed Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	LC50	95% LCL	95% UCL
Control Threshold	0.0278	0.95%	1.12	0.023	13.3	12	14.8

Day 15 Mortality S	Calculated Variate(A/B)							Isotonic Variate			
Conc-µg/larv/da	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	N	36	0.028	0.000	1.000	0.167	600.00%	0.0%	1/36	0.0278	0.0%
0.35		36	0.056	0.000	1.000	0.232	418.00%	2.86%	2/36	0.037	0.95%
1		36	0.028	0.000	1.000	0.167	600.00%	0.0%	1/36	0.037	0.95%
2.8		36	0.028	0.000	1.000	0.167	600.00%	0.0%	1/36	0.037	0.95%
8.5		36	0.111	0.000	1.000	0.319	287.00%	8.57%	4/36	0.111	8.57%
25		36	1.000	1.000	1.000	0.000	0.00%	100.0%	36/36	1	100.0%

Report Date: Test Code/ID:

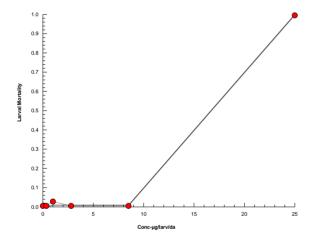
13 May-19 15:29 (p 2 of 2) 50451002 dd / 15-1302-1777

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

	Analysis ID: (09-8870-1578	Endpoint:	Larval Mortality		CETIS Version:	CETISv1.9.5
--	----------------	--------------	-----------	------------------	--	-----------------------	-------------

Analyzed: 13 May-19 15:22 Analysis: Untrimmed Spearman-Kärber Status Level: 1


Batch ID:03-8153-6585Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	LC50	95% LCL	95% UCL
Control Threshold	0	0.00%	1.15	0.0128	14.2	13.3	15

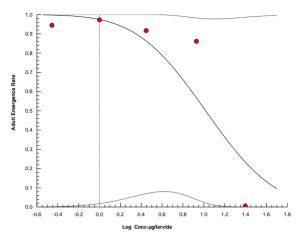
Larval Mortality S	Calculated Variate(A/B)							Isotonic Variate			
Conc-µg/larv/da	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	N	36	0.000	0.000	0.000	0.000		0.0%	0/36	0	0.0%
0.35		36	0.000	0.000	0.000	0.000		0.0%	0/36	0	0.0%
1		36	0.028	0.000	1.000	0.167	600.00%	2.78%	1/36	0.00926	0.93%
2.8		36	0.000	0.000	0.000	0.000		0.0%	0/36	0.00926	0.93%
8.5		36	0.000	0.000	0.000	0.000		0.0%	0/36	0.00926	0.93%
25		36	1.000	1.000	1.000	0.000	0.00%	100.0%	36/36	1	100.0%

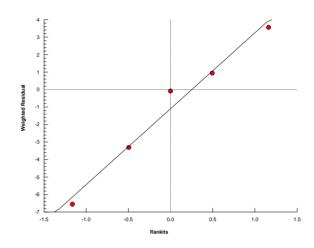
Report Date: Test Code/ID: 13 May-19 15:30 (p 1 of 2) 50451002 dd2 / 10-6855-4371

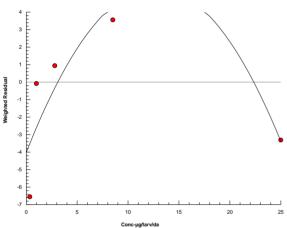
								Tes	t Code/ID:	50451	JU2 dd2 /	10-6855-4371
Specia	Study Hon	ey bee Lar	val Chror	ic Oral Toxici	ity, 21-day S	Study					Smith	ners Viscient
Analys	is ID: 19-3	170-0600	Е	ndpoint: Adı	ult Emergen	ce Rate		CET	IS Version:	CETISv1	.9.5	
Analyz	ed: 13 M	lay-19 15:2	5 A	nalysis: Line	ear Regress	ion (GLM)		Stat	us Level:	1		
Batch I	D : 13-0	098-8894	To	est Type: OE	CD 2014 HE	3 Larval Re	peat Exp	Ana	lyst:			
Start D	ate: 09 J	un-17	Р	rotocol: Lar	val Chronic	Oral Toxici	ty, 21-day Sti		ent:			
Ending	Date: 28 J	un-17	s	pecies: Api	s mellifera			Brir	ne:			
Test Le	ength: 19d	0h	Ta	axon:				Sou	rce: Wo	od's Beekee	ping Supp	oly, Age: <24
Linear	Regression	Options										
Model	Name	Link Fund	ction	Threshold	d Option	Thresh	Optimize	Pooled	Het Corr	Weighted	1	
Log-No	rmal (Probit)	η=inv Φ[π]	Zero Thre	shold	0	No	No	Yes	Yes		
Regres	sion Summ	ary										
Iters	LL	AICc	BIC	Mu	Sigma	Adj R2	PMSD	F Stat	P-Value	Decision	(α:5%)	
10	-27.1	64.3	57.5	1.02	0.522	0.99				Lack of Fi	t Not Test	ted
Point E	stimates											
Level	μg/larv/da	95% LCL	95% UC	:L								
EC1	0.636	n/a	n/a									
EC5	1.44	n/a	n/a									
EC10	2.23	n/a	n/a									
EC15	3	n/a	n/a									
EC20	3.79	n/a	n/a									
EC25	4.63	n/a	n/a									
EC40	7.68	n/a	n/a									
EC50	10.4	n/a	n/a									
Regres	sion Param	eters										
Parame	eter	Estimate	Std Err	or 95% LCL	95% UCL	t Stat	P-Value	Decision	ι(α:5%)			
Intercep	ot	-1.95	1.27	-6	2.1	-1.53	0.2229	Non-Sigr	ificant Parar	meter		
Slope		1.92	1.3	-2.22	6.05	1.47	0.2370	Non-Sigr	ificant Parar	neter		
ANOVA	Table											
Source	1	Sum Squa	ares M	ean Square	DF	F Stat	P-Value	Decision	ι(α:5%)			
Model		8740	87	740	1	389	2.8E-04	Significa	nt			
Residua	al 	67.4	22	2.5	3							
Residu	al Analysis											
Attribu		Method			Test Stat		P-Value	Decision				
Model F	Fit	Likelihood			43.5	7.81	<1.0E-37	•	nt Heterogen	•		
Pearson Chi-Sq GOF Test Distribution Shapiro-Wilk W Normality Test			67.4 0.975	7.81 0.34	<1.0E-37 0.9089	•	nt Heterogen Distribution	eity				
				manty 103t	0.575				/ISTRIBUTION			
	mergence F		-	Ma	NA:		ulated Varia		OVe/	0/ 5% 1		Б
	ıg/larv/da	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A 24	B 26
0.35			1	0.944	0.944	0.944	0.000	0.000	0.00%	0.0%	34	36 36
1 2.8			1 1	0.972 0.917	0.972 0.917	0.972 0.917	0.000 0.000	0.000	0.00% 0.00%	-2.94% 2.94%	35	36 36
2.6 8.5			1	0.861	0.861	0.861	0.000	0.000	0.00%	2.94% 8.82%	33 31	36
25			-	0.000	0.000	0.000	0.000	0.000	0.00/0	100.0%	0	
∠5			1	0.000	0.000	0.000	0.000	0.000		100.0%	U	36

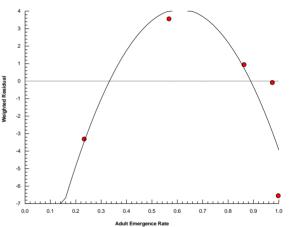
Report Date: Test Code/ID:

13 May-19 15:30 (p 2 of 2) 50451002 dd2 / 10-6855-4371


Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study


Smithers Viscient


Analysis ID:19-3170-0600Endpoint:Adult Emergence RateCETIS Version:CETISv1.9.5Analyzed:13 May-19 15:25Analysis:Linear Regression (GLM)Status Level:1


Graphics

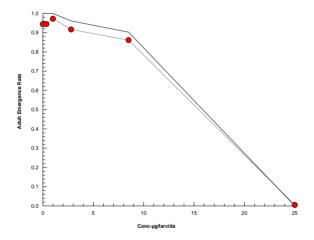
Log-Normal: inv $\Phi[\pi] = \alpha + \beta \cdot \log[x]$

Report Date: Test Code/ID: 13 May-19 15:31 (p 1 of 1) 50451002 dd2 / 10-6855-4371

Special Study Honey bee Larval Chronic Oral Toxicity, 21-day Study

Smithers Viscient

Analysis ID:	03-8851-2540	Endpoint:	Adult Emergence Rate	CETIS Version:	CETISv1.9.5
Analyzed:	13 May-19 15:25	Analysis:	Untrimmed Spearman-Kärber	Status Level:	1


Batch ID:13-0098-8894Test Type:OECD 2014 HB Larval Repeat ExpAnalyst:Start Date:09 Jun-17Protocol:Larval Chronic Oral Toxicity, 21-day StudyDiluent:Ending Date:28 Jun-17Species:Apis melliferaBrine:

Test Length: 19d 0h Taxon: Source: Wood's Beekeeping Supply, Age: <24

Spearman-Kärber Estimates

Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.0556	0.00%	1.1	0.0278	12.6	11.1	14.3

Adult Emergence Rate Summary			Calculated Variate(A/B)							Isotonic Variate	
Conc-µg/larv/da	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	N	1	0.944	0.944	0.944	0.000	0.00%	0.0%	34/36	0.954	0.0%
0.35		1	0.944	0.944	0.944	0.000	0.00%	0.0%	34/36	0.954	0.0%
1		1	0.972	0.972	0.972	0.000	0.00%	-2.94%	35/36	0.954	0.0%
2.8		1	0.917	0.917	0.917	0.000	0.00%	2.94%	33/36	0.917	3.88%
8.5		1	0.861	0.861	0.861	0.000	0.00%	8.82%	31/36	0.861	9.71%
25		1	0.000	0.000	0.000	0.000		100.0%	0/36	0	100.0%

